1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
|
use std::collections::HashMap;
#[cfg(not(feature = "simd-kmeans"))]
use crate::nih_kmeans::KMeans;
#[cfg(feature = "simd-kmeans")]
use kmeans::{KMeans, KMeansConfig};
use rgb::RGB8;
use crate::{
difference::{self, DiffFn},
ImageData,
};
pub trait Selector {
// wanted Into<ImageData> here but rustc got mad about vtable building
// because we store this as Box<dyn Selector> in Squasher and it's builder
fn select(&mut self, max_colors: usize, image: ImageData) -> Vec<RGB8>;
}
pub struct SortSelect {
tolerance: f32,
difference_fn: Box<DiffFn>,
}
impl Selector for SortSelect {
/// Pick the colors in the palette from a Vec of colors sorted by number
/// of times they occur, high to low.
fn select(&mut self, max_colours: usize, image: ImageData) -> Vec<RGB8> {
let sorted = Self::unique_and_sort(image);
let tolerance = (self.tolerance / 100.0) * 765.0;
let mut selected_colors: Vec<RGB8> = Vec::with_capacity(max_colours);
for sorted_color in sorted {
if max_colours <= selected_colors.len() {
break;
} else if selected_colors.iter().all(|selected_color| {
(self.difference_fn)(selected_color, &sorted_color) > tolerance
}) {
selected_colors.push(sorted_color);
}
}
selected_colors
}
}
impl SortSelect {
/// How different colours have to be to enter the palette. Should be between
/// 0.0 and 100.0, but is unchecked.
pub fn tolerance(mut self, percent: f32) -> Self {
self.tolerance = percent;
self
}
/// The function to use to compare colours while selecting the palette.
///
/// see the [difference] module for functions included with the crate and
/// information on implementing your own.
pub fn difference(mut self, diff_fn: &'static DiffFn) -> Self {
self.difference_fn = Box::new(diff_fn);
self
}
/// Takes an image buffer of RGB data and fill the color map
fn unique_and_sort<'a, Img>(buffer: Img) -> Vec<RGB8>
where
Img: Into<ImageData<'a>>,
{
let ImageData(rgb) = buffer.into();
let mut colors: HashMap<RGB8, usize> = HashMap::default();
//count pixels
for px in rgb {
match colors.get_mut(px) {
None => {
colors.insert(*px, 1);
}
Some(n) => *n += 1,
}
}
Self::sort(colors)
}
fn sort(map: HashMap<RGB8, usize>) -> Vec<RGB8> {
let mut sorted: Vec<(RGB8, usize)> = map.into_iter().collect();
sorted.sort_by(|(colour1, freq1), (colour2, freq2)| {
freq2
.cmp(freq1)
.then(colour2.r.cmp(&colour1.r))
.then(colour2.g.cmp(&colour1.g))
.then(colour2.b.cmp(&colour1.b))
});
sorted.into_iter().map(|(color, _count)| color).collect()
}
}
impl Default for SortSelect {
fn default() -> Self {
Self {
tolerance: 3.0,
difference_fn: Box::new(difference::rgb),
}
}
}
#[derive(Debug, Default)]
pub struct Kmeans {
pub max_iter: usize,
}
#[cfg(not(feature = "simd-kmeans"))]
impl Selector for Kmeans {
fn select(&mut self, max_colors: usize, image: ImageData) -> Vec<RGB8> {
let ImageData(rgb) = image;
let kmean = KMeans::new(rgb.to_vec());
kmean.get_k_colors(max_colors, self.max_iter)
}
}
#[cfg(feature = "simd-kmeans")]
impl Selector for Kmeans {
fn select(&mut self, max_colors: usize, image: ImageData) -> Vec<RGB8> {
use rgb::ComponentBytes;
let ImageData(rgb) = image;
let kmean = KMeans::new(
rgb.as_bytes()
.iter()
.map(|u| *u as f32)
.collect::<Vec<f32>>(),
rgb.as_bytes().len() / 3,
3,
);
let result = kmean.kmeans_lloyd(
max_colors,
self.max_iter,
KMeans::init_kmeanplusplus,
&KMeansConfig::default(),
);
result
.centroids
.chunks_exact(3)
.map(|rgb| {
RGB8::new(
rgb[0].round() as u8,
rgb[1].round() as u8,
rgb[2].round() as u8,
)
})
.collect()
}
}
|