1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
|
use std::{collections::HashMap, env::args};
use image::io::Reader as ImageReader;
use image::{buffer::Pixels, Rgb};
const MAX_COLORS: usize = 256;
const TOLERANCE: f32 = 0.6;
const RGB_TOLERANCE: f32 = 10.0 * TOLERANCE;
fn main() {
let filename = args().nth(1).unwrap();
let outname = args().nth(2).unwrap();
// The percent of RGB value difference a color has to surpass to be considered unique
let imageread = ImageReader::open(&filename).expect("Failed to open image!");
let mut image = imageread
.decode()
.expect("Failed to decode image!")
.into_rgb8();
let selected_colors = quantize(image.pixels());
let mut color_map: HashMap<Rgb<u8>, Rgb<u8>> = HashMap::with_capacity(image.len() / 2);
// Selected colors are themselves
for color in selected_colors.iter() {
color_map.insert(*color, *color);
}
// Max complexity is O(n * max_colors)
for color in image.pixels_mut() {
let quantized = color_map.entry(*color).or_insert({
let mut min_difference = f32::MAX;
let mut min_difference_color = *color;
for selected_color in &selected_colors {
let difference = rgb_difference(color, selected_color);
if difference < min_difference {
min_difference = difference;
min_difference_color = *selected_color;
}
}
min_difference_color
});
*color = *quantized;
}
image.save(outname).expect("Failed to write out");
}
fn quantize<'a, T>(pixels: T) -> Vec<Rgb<u8>>
where
T: Iterator<Item = &'a Rgb<u8>>,
{
let mut colors: HashMap<Rgb<u8>, usize> = HashMap::new();
//count pixels
for pixel in pixels {
match colors.get_mut(pixel) {
None => {
colors.insert(*pixel, 1);
}
Some(n) => *n += 1,
}
}
let mut sorted: Vec<(Rgb<u8>, usize)> = colors.into_iter().collect();
sorted.sort_by(|(colour1, freq1), (colour2, freq2)| {
freq2
.cmp(freq1)
.then(colour2[0].cmp(&colour1[0]))
.then(colour2[1].cmp(&colour1[1]))
.then(colour2[2].cmp(&colour1[2]))
});
let mut selected_colors: Vec<Rgb<u8>> = Vec::with_capacity(MAX_COLORS);
for (key, _value) in sorted.iter() {
if selected_colors.len() >= MAX_COLORS {
break;
} else if selected_colors
.iter()
.all(|color| rgb_difference(key, color) > RGB_TOLERANCE)
{
selected_colors.push(*key);
}
}
selected_colors
}
#[allow(clippy::many_single_char_names)]
fn rgb_difference(a: &Rgb<u8>, z: &Rgb<u8>) -> f32 {
let (a, b, c) = pixel_rgb_to_hsv(a);
let (d, e, f) = pixel_rgb_to_hsv(z);
(((c - f) * (c - f)) + ((a - d).abs() / 90.0) + (b - e).abs()) as f32
}
#[allow(clippy::float_cmp)]
fn pixel_rgb_to_hsv(a: &Rgb<u8>) -> (f32, f32, f32) {
let (r, g, b) = (
a.0[0] as f32 / 256.0,
a.0[1] as f32 / 256.0,
a.0[2] as f32 / 256.0,
);
let value = r.max(g.max(b));
let x_min = r.min(g.min(b));
let chroma = value - x_min;
let hue = if chroma == 0.0 {
0.0
} else if value == r {
60.0 * ((g - b) / chroma)
} else if value == g {
60.0 * (2.0 + (b - r) / chroma)
} else if value == b {
60.0 * (4.0 + (r - g) / chroma)
} else {
unreachable!()
};
let value_saturation = if value == 0.0 { 0.0 } else { chroma / value };
/* Rotate the color wheel counter clockwise to the negative location
| Keep the wheel in place and remove any full rotations
_____V____ _____V____
| | |*/
((hue + 360.0) % 360.0, value_saturation * 2.0, value * 2.0)
}
|