about summary refs log tree commit diff
path: root/src/main.rs
blob: f1915f857a47ad3ca7bc2f5a2be164ebbd114bd6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
use std::time::Instant;
use std::{collections::HashMap, env::args};

use image::io::Reader as ImageReader;
use image::Rgb;

use ahash::RandomState;

use rayon::prelude::*;

const MAX_COLORS: usize = 16;

const RGB_TOLERANCE: f32 = 0.25 + (1.0 - (MAX_COLORS as f32 / 256.0));

fn main() {
    let filename = args().nth(1).unwrap();
    let outname = args().nth(2).unwrap();
    // The percent of RGB value difference a color has to surpass to be considered unique

    let imageread = ImageReader::open(&filename).expect("Failed to open image!");
    let mut image = imageread
        .decode()
        .expect("Failed to decode image!")
        .into_rgb8();

    //let mem_before_sort = mallinfo().hblkhd as usize;
    let start_sort = Instant::now();
    let sorted_colors = unique_and_sort(image.pixels());
    println!("Sort took {}s", start_sort.elapsed().as_secs_f32());

    //let mem_before_selection = mallinfo().hblkhd as usize;
    let start_selection = Instant::now();
    let selected_colors = select_colors(&sorted_colors);
    println!(
        "Color Selection took {}s. Count {}",
        start_selection.elapsed().as_secs_f32(),
        selected_colors.len()
    );

    let start_array = Instant::now();
    let mut array = vec![0usize; 256 * 256 * 256];
    println!(
        "Array creation took {}s",
        start_array.elapsed().as_secs_f32()
    );

    let start_map = Instant::now();

    for (sorted, _) in &sorted_colors {
        let mut min_diff = f32::MAX;
        let mut min_index = usize::MAX;

        for (index, selected) in selected_colors.iter().enumerate() {
            let diff = rgb_difference(sorted, selected);
            if diff < min_diff {
                min_diff = diff;
                min_index = index;
            }
        }

        array[color_index(sorted)] = min_index;
    }

    println!(
        "Creating color map {:.2}s",
        start_map.elapsed().as_secs_f32()
    );

    let start_fill = Instant::now();
    // Max complexity is O(n * max_colors)
    for color in image.pixels_mut() {
        let index = array[color_index(color)];

        *color = selected_colors[index];
    }
    println!(
        "Took {:.2}s to fill in the image.\nTotal time from sort {:.2}s",
        start_fill.elapsed().as_secs_f32(),
        start_sort.elapsed().as_secs_f32()
    );

    image.save(outname).expect("Failed to write out");
}

fn unique_and_sort<'a, T>(pixels: T) -> Vec<(Rgb<u8>, usize)>
where
    T: Iterator<Item = &'a Rgb<u8>>,
{
    let mut colors: HashMap<Rgb<u8>, usize, RandomState> = HashMap::default();

    //count pixels
    for pixel in pixels {
        match colors.get_mut(pixel) {
            None => {
                colors.insert(*pixel, 1);
            }
            Some(n) => *n += 1,
        }
    }

    let mut sorted: Vec<(Rgb<u8>, usize)> = colors.into_par_iter().collect();
    sorted.sort_by(|(colour1, freq1), (colour2, freq2)| {
        freq2
            .cmp(freq1)
            .then(colour2[0].cmp(&colour1[0]))
            .then(colour2[1].cmp(&colour1[1]))
            .then(colour2[2].cmp(&colour1[2]))
    });

    sorted
}

fn select_colors(sorted: &[(Rgb<u8>, usize)]) -> Vec<Rgb<u8>> {
    let mut selected_colors: Vec<Rgb<u8>> = Vec::with_capacity(MAX_COLORS);

    for (key, _value) in sorted.iter() {
        if selected_colors.len() >= MAX_COLORS {
            break;
        } else if selected_colors
            .iter()
            .all(|color| rgb_difference(key, color) > RGB_TOLERANCE)
        {
            selected_colors.push(*key);
        }
    }

    selected_colors
}

#[inline(always)]
fn color_index(c: &Rgb<u8>) -> usize {
    c.0[0] as usize * (256 * 256) + c.0[1] as usize * 256 + c.0[2] as usize
}

#[allow(clippy::many_single_char_names)]
#[inline(always)]
fn rgb_difference(a: &Rgb<u8>, z: &Rgb<u8>) -> f32 {
    let (a, b, c) = pixel_rgb_to_hsv(a);
    let (d, e, f) = pixel_rgb_to_hsv(z);

    (((c - f) * (c - f)) + ((a - d).abs() / 90.0) + (b - e).abs()) as f32
}

#[allow(clippy::float_cmp)]
fn pixel_rgb_to_hsv(a: &Rgb<u8>) -> (f32, f32, f32) {
    let (r, g, b) = (
        a.0[0] as f32 / 256.0,
        a.0[1] as f32 / 256.0,
        a.0[2] as f32 / 256.0,
    );

    let value = r.max(g.max(b));
    let x_min = r.min(g.min(b));
    let chroma = value - x_min;

    let hue = if chroma == 0.0 {
        0.0
    } else if value == r {
        60.0 * ((g - b) / chroma)
    } else if value == g {
        60.0 * (2.0 + (b - r) / chroma)
    } else if value == b {
        60.0 * (4.0 + (r - g) / chroma)
    } else {
        unreachable!()
    };

    let value_saturation = if value == 0.0 { 0.0 } else { chroma / value };

    /* Rotate the color wheel counter clockwise to the negative location
          |       Keep the wheel in place and remove any full rotations
     _____V____ _____V____
    |          |          |*/
    ((hue + 360.0) % 360.0, value_saturation * 2.0, value * 2.0)
}