1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
|
use std::collections::HashMap;
use std::ops::Deref;
use ahash::RandomState;
pub struct Squasher<T> {
palette: Vec<(Rgb, usize)>,
larget_count: usize,
map: Vec<T>,
}
impl<T: Count> Squasher<T> {
/// Creates a new squasher and allocates a new color map. A color map
/// contains every 24-bit color and ends up with an amount of memory
/// equal to `16MB * std::mem::size_of(T)`
pub fn new(max_colors: T, buffer: &[u8]) -> Self {
let sorted = Self::unique_and_sort(buffer);
let selected = Self::select_colors(&sorted, max_colors);
let mut this = Self {
palette: selected,
larget_count: sorted.first().unwrap().1,
map: vec![T::zero(); 256 * 256 * 256],
};
this.map_selected(&sorted);
this
}
/// Take an RGB image buffer and an output buffer. The function will fill
/// the output buffer with indexes into the Palette.
pub fn map_image(&mut self, image: &[u8], buffer: &mut [T]) {
let sorted = Self::unique_and_sort(image);
self.map_selected(&sorted);
for (idx, color) in image.chunks(3).enumerate() {
let index = self.map[color_index(&Rgb([color[0], color[1], color[2]]))];
buffer[idx] = index;
}
}
/// Retrieve the palette this squasher is working from
pub fn palette(&self) -> Vec<Rgb> {
self.palette.iter().map(|ahh| ahh.0).collect()
}
/// Retrieve the palette as bytes
pub fn palette_bytes(&self) -> Vec<u8> {
self.palette
.clone()
.into_iter()
.map(|rgb| rgb.0.into_iter())
.flatten()
.collect()
}
/// Takes an image buffer of RGB data and fill the color map
fn unique_and_sort(buffer: &[u8]) -> Vec<(Rgb, usize)> {
let mut colors: HashMap<Rgb, usize, RandomState> = HashMap::default();
//count pixels
for pixel in buffer.chunks(3) {
let rgb = Rgb([pixel[0], pixel[1], pixel[2]]);
match colors.get_mut(&rgb) {
None => {
colors.insert(rgb, 1);
}
Some(n) => *n += 1,
}
}
let mut sorted: Vec<(Rgb, usize)> = colors.into_iter().collect();
sorted.sort_by(|(colour1, freq1), (colour2, freq2)| {
freq2
.cmp(freq1)
.then(colour2[0].cmp(&colour1[0]))
.then(colour2[1].cmp(&colour1[1]))
.then(colour2[2].cmp(&colour1[2]))
});
sorted
}
fn select_colors(sorted: &[(Rgb, usize)], max_colors: T) -> Vec<(Rgb, usize)> {
#[allow(non_snake_case)]
let RGB_TOLERANCE: f32 = 0.04 * 256.0;
let mut selected_colors: Vec<(Rgb, usize)> = Vec::with_capacity(max_colors.as_usize());
for (key, count) in sorted.iter() {
if max_colors.le(&selected_colors.len()) {
break;
} else if selected_colors
.iter()
.all(|color| rgb_difference(key, &color.0) > RGB_TOLERANCE)
{
selected_colors.push((*key, *count));
}
}
selected_colors
}
fn map_selected(&mut self, sorted: &[(Rgb, usize)]) {
for (sorted, _) in sorted {
let mut min_diff = f32::MAX;
let mut min_index = usize::MAX;
for (index, (selected, count)) in self.palette.iter().enumerate() {
//let count_weight = *count as f32 / self.larget_count as f32;
let diff = rgb_difference(sorted, selected); // - count_weight * 64.0;
// This is kind of racist genny
/*if selected[0] + selected[1] + selected[2] < 72 {
continue;
}*/
//println!("{diff} - {selected:?}");
if diff.max(0.0) < min_diff {
min_diff = diff;
min_index = index;
}
}
self.map[color_index(sorted)] = T::from_usize(min_index);
}
}
}
pub trait Count: Copy + Clone {
fn zero() -> Self;
fn as_usize(&self) -> usize;
fn from_usize(from: usize) -> Self;
fn le(&self, rhs: &usize) -> bool;
}
macro_rules! count_impl {
($kind:ty) => {
impl Count for $kind {
fn zero() -> Self {
0
}
fn as_usize(&self) -> usize {
*self as usize
}
#[inline(always)]
fn from_usize(from: usize) -> Self {
from as Self
}
#[inline(always)]
fn le(&self, rhs: &usize) -> bool {
*self as usize <= *rhs
}
}
};
}
count_impl!(u8);
count_impl!(u16);
count_impl!(u32);
count_impl!(u64);
count_impl!(usize);
#[derive(Copy, Clone, Debug, Eq, Hash, PartialEq)]
pub struct Rgb([u8; 3]);
impl Deref for Rgb {
type Target = [u8; 3];
fn deref(&self) -> &Self::Target {
&self.0
}
}
#[inline(always)]
fn color_index(c: &Rgb) -> usize {
c.0[0] as usize * (256 * 256) + c.0[1] as usize * 256 + c.0[2] as usize
}
#[allow(clippy::many_single_char_names)]
#[inline(always)]
fn rgb_difference(a: &Rgb, b: &Rgb) -> f32 {
let absdiff = |a: u8, b: u8| (a as f32 - b as f32).abs();
/*let hsv1 = pixel_rgb_to_hsv(a);
let hsv2 = pixel_rgb_to_hsv(b);*/
//let diff_max = 3.0;
absdiff(a.0[0], b.0[0]) + absdiff(a.0[1], b.0[1]) + absdiff(a.0[2], b.0[2])
/*(((hsv1.0 / 90.0) - (hsv2.0 / 90.0)).abs()
+ (hsv1.1 - hsv2.1).abs()
+ ((hsv1.2 - hsv1.2).abs()))
/ diff_max*/
}
fn pixel_rgb_to_hsv(a: &Rgb) -> (f32, f32, f32) {
let (r, g, b) = (
a.0[0] as f32 / 256.0,
a.0[1] as f32 / 256.0,
a.0[2] as f32 / 256.0,
);
let value = r.max(g.max(b));
let x_min = r.min(g.min(b));
let chroma = value - x_min;
let hue = if chroma == 0.0 {
0.0
} else if value == r {
60.0 * ((g - b) / chroma)
} else if value == g {
60.0 * (2.0 + (b - r) / chroma)
} else if value == b {
60.0 * (4.0 + (r - g) / chroma)
} else {
unreachable!()
};
let value_saturation = if value == 0.0 { 0.0 } else { chroma / value };
/* Rotate the color wheel counter clockwise to the negative location
| Keep the wheel in place and remove any full rotations
_____V____ _____V____
| | |*/
((hue + 360.0) % 360.0, value_saturation * 2.0, value * 2.0)
}
|