about summary refs log tree commit diff
path: root/src/nih_kmeans.rs
diff options
context:
space:
mode:
Diffstat (limited to 'src/nih_kmeans.rs')
-rw-r--r--src/nih_kmeans.rs129
1 files changed, 129 insertions, 0 deletions
diff --git a/src/nih_kmeans.rs b/src/nih_kmeans.rs
new file mode 100644
index 0000000..a34d528
--- /dev/null
+++ b/src/nih_kmeans.rs
@@ -0,0 +1,129 @@
+use std::collections::HashMap;
+
+#[cfg(rand)]
+use rand::{prelude::*, seq::index::sample};
+use rgb::{RGB, RGB8};
+
+pub struct KMeans {
+	samples: Vec<RGB8>,
+}
+
+#[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)]
+struct HashableRGBF {
+	inner: (u32, u32, u32),
+}
+
+impl From<RGB<f32>> for HashableRGBF {
+	fn from(value: RGB<f32>) -> Self {
+		Self {
+			inner: (value.r.to_bits(), value.g.to_bits(), value.b.to_bits()),
+		}
+	}
+}
+
+impl KMeans {
+	pub fn new(samples: Vec<RGB8>) -> Self {
+		Self { samples }
+	}
+	pub fn get_k_colors(&self, k: usize, max_iter: usize) -> Vec<RGB8> {
+		let mut centroids = self.get_centroid_seeds_simple(k);
+
+		for _ in 0..max_iter {
+			let mut clusters: HashMap<HashableRGBF, Vec<RGB8>> = HashMap::new();
+
+			for &sample in &self.samples {
+				let closest_centroid = Self::closest_centroid(&centroids, sample.into());
+				clusters
+					.entry(closest_centroid.into())
+					.or_default()
+					.push(sample);
+			}
+			centroids = clusters
+				.into_values()
+				.map(|members| vector_avg(&members))
+				.collect()
+		}
+		centroids
+			.into_iter()
+			.map(|c| RGB8::new(c.r.round() as u8, c.g.round() as u8, c.b.round() as u8))
+			.collect()
+	}
+
+	/// Picks a point at random (if feature rand is enabled) for the first centroid, then iteratively adds the point furthest away from any centroid
+	/// A more complex solution is the probabilistic k-means++ algorithm (https://www.mathworks.com/help/stats/kmeans.html#bueq7aj-5)
+	fn get_centroid_seeds_simple(&self, k: usize) -> Vec<RGB<f32>> {
+		if k >= self.samples.len() {
+			return self.samples.iter().map(|&v| v.into()).collect();
+		}
+
+		#[cfg(rand)]
+		let index = thread_rng().gen_range(0..self.samples.len());
+		#[cfg(not(rand))]
+		let index = 0; //lol
+
+		let mut centroids: Vec<RGB<f32>> = vec![self.samples[index].into()];
+		while centroids.len() < k {
+			let next = *self
+				.samples
+				.iter()
+				.max_by(|&&v1, &&v2| {
+					let v1_closest_centroid = Self::closest_centroid(&centroids, v1.into());
+					let v2_closest_centroid = Self::closest_centroid(&centroids, v2.into());
+
+					vector_diff_2_norm(v1.into(), v1_closest_centroid)
+						.partial_cmp(&vector_diff_2_norm(v2.into(), v2_closest_centroid))
+						.unwrap()
+				})
+				.unwrap();
+			centroids.push(next.into());
+		}
+		centroids
+	}
+
+	fn closest_centroid(centroids: &[RGB<f32>], v: RGB<f32>) -> RGB<f32> {
+		*centroids
+			.iter()
+			.min_by(|&&c1, &&c2| {
+				vector_diff_2_norm(c1, v)
+					.partial_cmp(&vector_diff_2_norm(c2, v))
+					.unwrap()
+			})
+			.unwrap()
+	}
+
+	#[cfg(rand)]
+	fn get_centroid_seeds_random(&self, k: usize) -> Vec<RGB<f32>> {
+		if k >= self.samples.len() {
+			return self.samples.iter().map(|&v| v.into()).collect();
+		}
+
+		sample(&mut thread_rng(), self.samples.len(), k)
+			.into_iter()
+			.map(|i| self.samples[i].into())
+			.collect()
+	}
+}
+
+fn vector_diff(v1: RGB<f32>, v2: RGB<f32>) -> RGB<f32> {
+	RGB::new(v1.r - v2.r, v1.g - v2.g, v1.b - v2.b)
+}
+
+fn vector_diff_2_norm(v1: RGB<f32>, v2: RGB<f32>) -> f32 {
+	let diff = vector_diff(v1, v2);
+	(diff.r.powi(2) + diff.g.powi(2) + diff.b.powi(2)).sqrt()
+}
+
+fn vector_sum(acc: RGB<f32>, elem: RGB<f32>) -> RGB<f32> {
+	RGB::new(acc.r + elem.r, acc.g + elem.g, acc.b + elem.b)
+}
+
+fn vector_avg(vs: &[RGB8]) -> RGB<f32> {
+	let summed = vs.iter().fold(RGB::new(0.0, 0.0, 0.0), |acc, elem| {
+		vector_sum(acc, (*elem).into())
+	});
+	RGB::new(
+		summed.r / vs.len() as f32,
+		summed.g / vs.len() as f32,
+		summed.b / vs.len() as f32,
+	)
+}