1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
|
use std::{fs::File, io::Write, os::unix::prelude::FileExt, path::Path};
use lri_rs::{proto::camera_module::CameraModule, Message};
use png::{BitDepth, ColorType};
// This code is going to be rough. Just trying to parse this using the technique
// I know: just play with the raw data
fn main() {
let fname = std::env::args().nth(1).unwrap();
let data = std::fs::read(fname).unwrap();
println!("Read {:.2}MB", data.len() as f32 / (1024.0 * 1024.0));
let magic_id = [76, 69, 76, 82];
let magic_id_skip = 21;
let reserved = [0, 0, 0, 0, 0, 0, 0];
let look_length = magic_id.len() + magic_id_skip + reserved.len();
let mut heads = vec![];
println!("\nLooking for LELR");
for idx in 0..data.len() - look_length {
if &data[idx..idx + magic_id.len()] == magic_id.as_slice() {
print!("Found! Offset {idx} - ");
let reserved_start = idx + magic_id.len() + magic_id_skip;
if &data[reserved_start..reserved_start + reserved.len()] == reserved.as_slice() {
println!("Reserved matched!");
let header = LightHeader::new(&data[idx..]);
let start = idx;
let end = start + header.combined_length as usize;
heads.push(HeaderAndOffset { header, start, end });
} else {
println!("No reserve match :(");
}
}
}
let ar835 = 3264 * 2448;
let ar835_6mp = 3264 * 1836;
let ar1335_crop = 4160 * 3120;
let ar1335 = 4208 * 3120;
let imx386 = 4032 * 3024;
let known_res = vec![ar835, ar835_6mp, ar1335, imx386];
println!("\nFound {} LightHeaders", heads.len());
println!("\nLooking for known resolutions!");
for (idx, head) in heads.iter().enumerate() {
for res in &known_res {
if head.header.header_length == *res {
println!("KNOWN RES: {}", idx);
}
}
}
println!("\nChecking if there is outlying data...");
for idx in 1..heads.len() {
let this = &heads[idx];
let before = &heads[idx - 1];
if before.end != this.start {
println!(
"Headers {} and {} are gapped by {} bytes",
idx - 1,
idx,
this.start - before.end
);
} else {
println!("{} and {} are consecutive with no gap!", idx - 1, idx);
}
}
let end_difference = heads.last().unwrap().end - data.len();
if end_difference > 0 {
println!("{} bytes at the end", end_difference);
} else {
println!("File has no extraneous data at the end!");
}
println!("\nDumping header info..");
heads.iter().for_each(|h| h.header.nice_info());
println!("\nWriting large ones to disk and collecting the smalls!");
let mut small: Vec<u8> = vec![];
for (idx, head) in heads.iter().enumerate() {
if head.header.header_length > 1024 * 1024 {
// I guess we only care if it's at least a megabyte
let name = format!("{idx}.lri_part");
let mut file = File::create(&name).unwrap();
file.write_all(&data[head.start..head.end]).unwrap();
println!(
"Wrote {:.2}MB to disk as {name}",
head.header.combined_length as f32 / (1024.0 * 1024.0)
);
} else {
small.extend(&data[head.start..head.end]);
}
}
let mut file = File::create("small.lri_part").unwrap();
file.write_all(&small).unwrap();
println!(
"Wrote {:.2}MB to disk as small.lri_part",
small.len() as f32 / (1024.0 * 1024.0)
);
let stamp = [
08, 0xe7, 0x0f, 0x10, 0x06, 0x18, 0x07, 0x20, 0x13, 0x28, 0x0e,
];
println!("\nLooking for timestamps!");
for (idx, head) in find_pattern(&heads, &data, &stamp) {
println!("Found stamp in {idx}");
}
println!("\nAttemtping to parse data after first image in 2");
let head = &heads[2];
let start = head.start + (ar1335_crop as f32 * 2.5).ceil() as usize;
let after_image = &data[start..start + 4352];
let proto = match lri_rs::proto::lightheader::LightHeader::parse_from_bytes(after_image) {
Ok(_) => println!("Success?!?!?!"),
Err(e) => println!("Failed {e}"),
};
println!("Eight before: {:?}", &data[start - 8..start]);
println!("Eight in: {:?}", &data[start..start + 8]);
println!("\nDumping the Message of idx 1");
dump_body(&heads[4], &data, "msg4.lri_part");
let msg = body(&heads[4], &data);
let proto = match lri_rs::proto::lightheader::LightHeader::parse_from_bytes(msg) {
Ok(data) => {
println!("Success?!?!?!");
println!("{data:?}");
}
Err(e) => println!("Failed {e}"),
};
}
fn dump_body(head: &HeaderAndOffset, data: &[u8], path: &str) {
let msg = body(head, data);
let mut file = File::create(&path).unwrap();
file.write_all(msg).unwrap();
println!("Wrote {:.2}KB to disk as {path}", msg.len() as f32 / 1024.0);
}
fn body<'a>(head: &HeaderAndOffset, data: &'a [u8]) -> &'a [u8] {
&data[head.start + head.header.header_length as usize
..head.start + head.header.header_length as usize + head.header.message_length as usize]
}
fn find_pattern<'a>(
heads: &'a [HeaderAndOffset],
data: &[u8],
pattern: &[u8],
) -> Vec<(usize, &'a HeaderAndOffset)> {
let mut finds = vec![];
for (head_idx, head) in heads.iter().enumerate() {
for idx in head.start..head.end - pattern.len() {
if &data[idx..idx + pattern.len()] == pattern {
finds.push((head_idx, head));
}
}
}
finds
}
fn make_png<P: AsRef<Path>>(
path: P,
width: usize,
height: usize,
color: ColorType,
depth: BitDepth,
data: &[u8],
) {
let bpp = match (color, depth) {
(ColorType::Grayscale, BitDepth::Eight) => 1,
(ColorType::Grayscale, BitDepth::Sixteen) => 2,
(ColorType::Rgb, BitDepth::Eight) => 3,
(ColorType::Rgb, BitDepth::Sixteen) => 6,
_ => panic!("unsupported color or depth"),
};
let pix = width * height;
let file = File::create("ahh.png").unwrap();
let mut enc = png::Encoder::new(file, width as u32, height as u32);
enc.set_color(color);
enc.set_depth(depth);
let mut writer = enc.write_header().unwrap();
writer.write_image_data(&data[..pix * bpp]).unwrap();
}
#[derive(Clone, Debug)]
struct HeaderAndOffset {
header: LightHeader,
// Inclusive
start: usize,
// Exclusive
end: usize,
}
#[derive(Clone, Debug)]
struct LightHeader {
magic_number: String,
combined_length: u64,
//FIXME: This appears to be the content length and not the header length? I thought
//it was weird that they were putting the header length here. Is the java decomp
//wrong?
header_length: u64,
message_length: u32,
// type
kind: u8,
reserved: [u8; 7],
}
impl LightHeader {
pub fn new(data: &[u8]) -> Self {
let magic_number = String::from_utf8(data[0..4].to_vec()).unwrap();
let combined_length = u64::from_le_bytes(data[4..12].try_into().unwrap());
//println!("Combined Length: {:?}", &data[4..12]);
let header_length = u64::from_le_bytes(data[12..20].try_into().unwrap());
//println!("Header Length: {:?}", &data[12..20]);
let message_length = u32::from_le_bytes(data[20..24].try_into().unwrap());
//println!("Message Length: {:?}", &data[20..24]);
let kind = data[24];
let reserved = data[25..32].try_into().unwrap();
LightHeader {
magic_number,
combined_length,
header_length,
message_length,
kind,
reserved,
}
}
pub fn print_info(&self) {
let LightHeader {
magic_number,
combined_length,
header_length,
message_length,
kind,
reserved,
} = self;
println!("\nMagic: {magic_number}\nCombined Length: {combined_length}\nHeader Length: {header_length}\nMessage Length: {message_length}\nKind: {kind}\nReserved: {reserved:?}");
}
pub fn nice_info(&self) {
let LightHeader {
magic_number,
combined_length,
header_length,
message_length,
kind,
reserved,
} = self;
println!(
"Content length: {:.2}KB | Kind {kind}",
*header_length as f32 / 1024.0
);
}
}
|