1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
|
use std::{fs::File, io::Write, os::unix::prelude::FileExt, path::Path};
use lri_rs::{proto::camera_module::CameraModule, Message};
use nalgebra::Matrix3;
use png::{BitDepth, ColorType};
use rawloader::CFA;
use rawproc::{
colorspace::BayerRgb,
image::{Image, RawMetadata},
};
use unpacker::Unpacker;
// This code is going to be rough. Just trying to parse this using the technique
// I know: just play with the raw data
fn main() {
let fname = std::env::args().nth(1).unwrap();
let mut data = std::fs::read(fname).unwrap();
println!("Read {:.2}MB", data.len() as f32 / (1024.0 * 1024.0));
let mut blocks = vec![];
loop {
let header = DataHeader::new(&data[..]);
let end = header.combined_length as usize;
if end == data.len() {
blocks.push(Block { header, data });
break;
} else {
let remain = data.split_off(end);
blocks.push(Block { header, data });
data = remain;
}
}
println!("Found {} blocks", blocks.len());
for (idx, block) in blocks.iter().enumerate() {
if block.is_sensor() {
println!("\nIDX {idx}");
block.header.print_info();
println!("");
} else {
block.header.nice_info();
}
}
/*
// Grabbed, quickly, from the sensor datasheets. (or in the case of the
// imx386 on some random website (canwe have a datasheet? shit)).
let ar835 = 3264 * 2448;
let ar835_6mp = 3264 * 1836;
let ar1335 = 4208 * 3120;
let imx386 = 4032 * 3024;
// Determined by lak experimentally
let ar1335_crop = 4160 * 3120;
println!("\nAttemtping to unpack image in idx0");
let head = &heads[0];
let mut msg = body(head, &data);
for AHH in 0..2 {
let mut up = Unpacker::new();
for idx in (0..16224000 * 2).rev() {
up.push(msg[idx]);
}
up.finish();
dump(&msg[..16224000], "fordatadog.packed");
let mut imgdata = vec![];
for (idx, chnk) in up.out.chunks(2).enumerate() {
let mut sixteen = (u16::from_le_bytes([chnk[0], chnk[1]]) as f32 / 1024.0) * 255.0;
imgdata.push(sixteen.min(255.0) as u8);
}
let rawimg: Image<u8, BayerRgb> = Image::from_raw_parts(
4160,
3120 * 2,
RawMetadata {
whitebalance: [1.0, 1.0, 1.35],
whitelevels: [1024, 1024, 1024],
crop: None,
cfa: CFA::new("BGGR"),
cam_to_xyz: Matrix3::new(1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0),
},
imgdata.clone(),
);
let mut img = rawimg.debayer();
for px in img.data.chunks_mut(3) {
px[0] = (px[0] as f32 * 1.95).min(255.0) as u8;
px[2] = (px[2] as f32 * 1.36).min(255.0) as u8;
}
let png = format!("image_{AHH}.png");
make_png(
&png,
4160,
3120 * 2,
ColorType::Rgb,
BitDepth::Eight,
&img.data,
);
println!("Wrote {png}");
msg = &msg[16224000..]; // + head.header.message_length as usize * 2..];
}
println!("\nDumping the Message of idx 4");
dump_body(&heads[4], &data, "msg4.lri_part");
let mut modules = vec![];
let mut sensor_data = vec![];
for (idx, head) in heads.iter().enumerate() {
print!("Head {idx} - ");
let msg = body(head, &data);
match (head.header.header_length == 32, head.header.kind) {
(true, 1) => {
match lri_rs::proto::view_preferences::ViewPreferences::parse_from_bytes(msg) {
Ok(_) => println!("View Preferences: Parsed"),
Err(e) => println!("View Preferences, failed: {e}"),
}
}
(true, 0) => match lri_rs::proto::lightheader::LightHeader::parse_from_bytes(msg) {
Ok(data) => {
let mods = &data.modules;
let datas = &data.sensor_data;
print!(
" [claimed: {} | actual: {}] - ",
head.header.message_length,
data.compute_size()
);
println!(
"LightHeader! Modules: {} - Datas: {} \\ ModCal: {}",
mods.len(),
datas.len(),
data.module_calibration.len()
);
modules.extend_from_slice(&mods);
sensor_data.extend_from_slice(&datas);
if false && data.module_calibration.len() > 0 {
for modc in data.module_calibration {
print!(" - {:?}", modc.get_camera_id());
}
println!("");
}
}
Err(e) => println!("LightHeader, failed: {e}"),
},
(true, knd) => {
println!("Unknown header kind [{knd}] and header_length is 32, skipping...");
}
(false, _) => {
println!("SensorData! Skipping for now...");
}
}
}*/
}
fn dump(data: &[u8], path: &str) {
let mut file = File::create(&path).unwrap();
file.write_all(data).unwrap();
println!(
"Wrote {:.2}KB to disk as {path}",
data.len() as f32 / 1024.0
);
}
fn make_png<P: AsRef<Path>>(
path: P,
width: usize,
height: usize,
color: ColorType,
depth: BitDepth,
data: &[u8],
) {
let bpp = match (color, depth) {
(ColorType::Grayscale, BitDepth::Eight) => 1,
(ColorType::Grayscale, BitDepth::Sixteen) => 2,
(ColorType::Rgb, BitDepth::Eight) => 3,
(ColorType::Rgb, BitDepth::Sixteen) => 6,
_ => panic!("unsupported color or depth"),
};
let pix = width * height;
let file = File::create(path).unwrap();
let mut enc = png::Encoder::new(file, width as u32, height as u32);
enc.set_color(color);
enc.set_depth(depth);
let mut writer = enc.write_header().unwrap();
writer.write_image_data(&data[..pix * bpp]).unwrap();
}
#[derive(Clone, Debug)]
struct Block {
header: DataHeader,
data: Vec<u8>,
}
impl Block {
pub fn body(&self) -> &[u8] {
&self.data[32..]
}
/// Block contains sensor data.
pub fn is_sensor(&self) -> bool {
self.header.header_length != 32
}
}
#[derive(Clone, Debug)]
struct DataHeader {
magic_number: String,
combined_length: u64,
//FIXME: This appears to be the content length and not the header length? I thought
//it was weird that they were putting the header length here. Is the java decomp
//wrong?
header_length: u64,
message_length: u32,
// type
kind: u8,
reserved: [u8; 7],
}
impl DataHeader {
pub fn new(data: &[u8]) -> Self {
let magic_number = String::from_utf8(data[0..4].to_vec()).unwrap();
let combined_length = u64::from_le_bytes(data[4..12].try_into().unwrap());
//println!("Combined Length: {:?}", &data[4..12]);
let header_length = u64::from_le_bytes(data[12..20].try_into().unwrap());
//println!("Header Length: {:?}", &data[12..20]);
let message_length = u32::from_le_bytes(data[20..24].try_into().unwrap());
//println!("Message Length: {:?}", &data[20..24]);
let kind = data[24];
let reserved = data[25..32].try_into().unwrap();
DataHeader {
magic_number,
combined_length,
header_length,
message_length,
kind,
reserved,
}
}
pub fn print_info(&self) {
let Self {
magic_number,
combined_length,
header_length,
message_length,
kind,
reserved,
} = self;
let combined_human = humanish(*combined_length as usize);
let header_human = humanish(*header_length as usize);
let message_human = humanish(*message_length as usize);
println!("Magic: {magic_number}\nCombined Length: {combined_human}\nHeader Length: {header_human}\nMessage Length: {message_human}\nKind: {kind}\nReserved: {reserved:?}");
}
pub fn nice_info(&self) {
let Self {
magic_number: _a,
combined_length: _b,
header_length,
message_length: _c,
kind,
reserved: _d,
} = self;
println!(
"Content length: {:.2}KB | Kind {kind}",
*header_length as f32 / 1024.0
);
}
pub fn bin_info(&self) {
let Self {
magic_number,
combined_length,
header_length: _a,
message_length: _b,
kind: _c,
reserved: _d,
} = self;
println!("{magic_number} {:b}", combined_length);
}
}
pub fn humanish(bytes: usize) -> String {
if bytes > 1024 * 10 {
// Ehhhhh 10KB
format!("{:.2} KB", bytes as f32 / 1024.0)
} else if bytes > 1024 * 1024 {
// A MB is enough to justify this I guess
format!("{:.2} MB", bytes as f32 / 1024.0 * 1024.0)
} else {
format!("{}", bytes)
}
}
|