1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
|
use lri_rs::{LriFile, RawImage, Whitepoint};
use nalgebra::{Matrix3, Matrix3x1};
mod rotate;
mod unpack;
fn main() {
let file_name = std::env::args().nth(1).unwrap();
let bytes = std::fs::read(file_name).unwrap();
let lri = LriFile::decode(&bytes);
println!("{} images", lri.image_count());
lri.reference_image()
.map(|raw| make(raw, String::from("reference.png")));
for (idx, img) in lri.images().enumerate() {
for color in &img.color {
println!(
"{:?} rg = {} bg = {}",
color.whitepoint, color.rg, color.bg
);
let white =
Matrix3::from_row_slice(&color.forward_matrix) * Matrix3x1::new(1.0, 1.0, 1.0);
let white_x = white[0] / (white[0] + white[1] + white[2]);
let white_y = white[1] / (white[0] + white[1] + white[2]);
let white_z = 1.0 - white_x - white_y;
println!("\twhite: x = {} y = {} z = {}", white_x, white_y, white_z);
println!("\t{:?}", color.forward_matrix);
}
//std::process::exit(0);
make(img, format!("image_{idx}.png"));
}
}
fn make(img: &RawImage, path: String) {
use rawproc::image::RawMetadata;
use rawproc::{colorspace::BayerRgb, image::Image};
let RawImage {
camera,
sensor,
width,
height,
format,
data,
sbro,
color,
} = img;
println!(
"{camera} {sensor:?} [{}:{}] {width}x{height} {format}",
sbro.0, sbro.1
);
// Assume 10-bit
let size = width * height;
let mut ten_data = vec![0; size];
unpack::tenbit(data, width * height, ten_data.as_mut_slice());
// I've only seen it on one color defintion or
// something, but there's a black level of 42, so subtract it
ten_data.iter_mut().for_each(|p| *p = p.saturating_sub(42));
// B G B G B G
// G R G R G R
// A1 - 1:0
// A2 - -1:-1
// A3 - 1:0
// A4 - 1:0
// A5 - 0:1
// B1 - NO
// B2 - RO
// B3 - RO
// B4 - RO
// B5 - NO
// C1 - NO
// C2 - RO
// C3 - NO
// C4 - RO
// C5 - RO
// C6 - -1:-1
let (mut rgb, color_format) = match img.cfa_string() {
Some(cfa_string) => {
let rawimg: Image<u16, BayerRgb> = Image::from_raw_parts(
4160,
3120,
// We only care about CFA here because all we're doing is debayering
RawMetadata {
whitebalance: [1.0; 3],
whitelevels: [1024; 3],
crop: None,
// ugh CFA isn't exposed, so we pulled in rawloader for now
cfa: rawloader::CFA::new(cfa_string),
cam_to_xyz: nalgebra::Matrix3::zeros(),
},
ten_data,
);
(rawimg.debayer().data, png::ColorType::Rgb)
}
None => (ten_data, png::ColorType::Grayscale),
};
rotate::rotate_180(rgb.as_mut_slice());
let mut floats: Vec<f32> = rgb.into_iter().map(|p| p as f32 / 1023.0).collect();
print!("\t");
color.iter().for_each(|c| print!("{:?} ", c.whitepoint));
println!();
match img.color_info(Whitepoint::F11) {
Some(c) => {
//println!("\tApplying color profile: {:?}", c.color_matrix);
let to_xyz = Matrix3::from_row_slice(&c.forward_matrix);
let to_srgb = Matrix3::from_row_slice(&BRUCE_XYZ_RGB_D65);
let color = Matrix3::from_row_slice(&c.color_matrix);
let d50_d65 = Matrix3::from_row_slice(&BRADFORD_D50_D65);
let xyz_d65 = to_xyz * d50_d65;
println!("{color}");
let white = xyz_d65 * Matrix3x1::new(1.0, 1.0, 1.0);
let white_x = white[0] / (white[0] + white[1] + white[2]);
let white_y = white[1] / (white[0] + white[1] + white[2]);
let white_z = 1.0 - white_x - white_y;
println!(
"\t{:?} ||| white: x = {} y = {} z = {}",
c.whitepoint, white_x, white_y, white_z
);
let premul = to_xyz * to_srgb;
let prenorm = premul.normalize();
println!("{prenorm}");
for chnk in floats.chunks_mut(3) {
let r = chnk[0] * (1.0 / c.rg);
let g = chnk[1];
let b = chnk[2] * (1.0 / c.bg);
let px = Matrix3x1::new(r, g, b);
//let rgb = premul * px;
//let px = color * px;
let xyz = to_xyz * px;
//let xyz = d50_d65 * xyz;
//let xyz_white = color * xyz;
let rgb = to_srgb * xyz;
chnk[0] = srgb_gamma(rgb[0]) * 255.0;
chnk[1] = srgb_gamma(rgb[1]) * 255.0;
chnk[2] = srgb_gamma(rgb[2]) * 255.0;
}
}
None => {
println!("\tno color profile found");
floats.iter_mut().for_each(|f| *f = srgb_gamma(*f) * 255.0);
}
}
let bytes: Vec<u8> = floats.into_iter().map(|f| f as u8).collect();
println!("Writing {}", &path);
make_png(path, *width, *height, &bytes, color_format)
}
#[rustfmt::skip]
#[allow(dead_code)]
const BRUCE_XYZ_RGB_D50: [f32; 9] = [
3.1338561, -1.6168667, -0.4906146,
-0.9787684, 1.9161415, 0.0334540,
0.0719453, -0.2289914, 1.4052427
];
#[rustfmt::skip]
const BRUCE_XYZ_RGB_D65: [f32; 9] = [
3.2404542, -1.5371385, -0.4985314,
-0.9692660, 1.8760108, 0.0415560,
0.0556434, -0.2040259, 1.0572252
];
#[rustfmt::skip]
const BRADFORD_D50_D65: [f32; 9] = [
0.9555766, -0.0230393, 0.0631636,
-0.0282895, 1.0099416, 0.0210077,
0.0122982, -0.0204830, 1.3299098,
];
#[inline]
pub fn srgb_gamma(mut float: f32) -> f32 {
if float <= 0.0031308 {
float *= 12.92;
} else {
float = float.powf(1.0 / 2.4) * 1.055 - 0.055;
}
float.clamp(0.0, 1.0)
}
fn make_png<P: AsRef<std::path::Path>>(
path: P,
width: usize,
height: usize,
data: &[u8],
color_format: png::ColorType,
) {
//return;
use std::fs::File;
let file = File::create(path).unwrap();
let mut enc = png::Encoder::new(file, width as u32, height as u32);
enc.set_color(color_format);
enc.set_depth(png::BitDepth::Eight);
let mut writer = enc.write_header().unwrap();
writer.write_image_data(data).unwrap();
}
|