use rgb::{ComponentBytes, FromSlice, RGB8}; use std::collections::HashMap; pub mod difference; use difference::DiffFn; pub struct SquasherBuilder { max_colours: T, difference_fn: Box, tolerance: f32, } impl SquasherBuilder { pub fn new() -> Self { Self::default() } /// The max number of colors selected for the palette, minus one. /// /// `max_colors(255)` will attempt to make a 256 color palette pub fn max_colors(mut self, max_minus_one: T) -> SquasherBuilder { self.max_colours = max_minus_one; self } /// The function to use to compare colours. /// /// see the [difference] module for functions included with the crate and /// information on implementing your own. pub fn difference(mut self, difference: &'static DiffFn) -> SquasherBuilder { self.difference_fn = Box::new(difference); self } /// Percent colours have to differ by to be included into the palette. /// between and including 0.0 to 100.0 pub fn tolerance(mut self, percent: f32) -> SquasherBuilder { self.tolerance = percent; self } pub fn build<'a, Img>(self, image: Img) -> Squasher where Img: Into>, { let mut squasher = Squasher::from_parts(self.max_colours, self.difference_fn, self.tolerance); squasher.recolor(image); squasher } } impl Default for SquasherBuilder { fn default() -> Self { Self { max_colours: T::from_usize(255), difference_fn: Box::new(difference::rgb), tolerance: 1.0, } } } pub struct Squasher { // one less than the max colours as you can't have a zero colour image. max_colours_min1: T, palette: Vec, map: Vec, difference_fn: Box, tolerance_percent: f32, } impl Squasher { /// Creates a new squasher and allocates a new color map. A color map /// contains every 24-bit color and ends up with an amount of memory /// equal to `16MB * std::mem::size_of(T)`. pub fn new<'a, Img>(max_colors_minus_one: T, buffer: Img) -> Self where Img: Into>, { let mut this = Self::from_parts(max_colors_minus_one, Box::new(difference::rgb), 1.0); this.recolor(buffer); this } pub fn builder() -> SquasherBuilder { SquasherBuilder::new() } /// Set the tolerance pub fn set_tolerance(&mut self, percent: f32) { self.tolerance_percent = percent; } /// Create a new palette from the colours in the given image. pub fn recolor<'a, Img>(&mut self, image: Img) where Img: Into>, { let sorted = Self::unique_and_sort(image); let selected = self.select_colors(sorted); self.palette = selected; } /// Create a Squasher from parts. Noteably, this leave your palette empty fn from_parts(max_colours_min1: T, difference_fn: Box, tolerance: f32) -> Self { Self { max_colours_min1, palette: vec![], map: vec![T::zero(); 256 * 256 * 256], difference_fn, tolerance_percent: tolerance, } } /// Take an RGB image buffer and an output buffer. The function will fill /// the output buffer with indexes into the Palette. The output buffer should /// be a third of the size of the image buffer. pub fn map<'a, Img>(&mut self, image: Img, buffer: &mut [T]) where Img: Into>, { let ImageData(rgb) = image.into(); if buffer.len() * 3 < rgb.len() { panic!("output buffer too small to fit indexed image"); } // We have to map the colours of this image now because it might contain // colours not present in the first image. let sorted = Self::unique_and_sort(rgb); self.map_selected(&sorted); for (idx, color) in rgb.iter().enumerate() { buffer[idx] = self.map[color_index(color)]; } } /// Like [Squasher::map] but it doesn't recount the input image. This will /// cause colors the Squasher hasn't seen before to come out as index 0 which /// may be incorrect! //TODO: gen- Better name? pub fn map_no_recolor<'a, Img>(&self, image: Img, buffer: &mut [T]) where Img: Into>, { let ImageData(rgb) = image.into(); if buffer.len() * 3 < rgb.len() { panic!("output buffer too small to fit indexed image"); } for (idx, color) in rgb.iter().enumerate() { buffer[idx] = self.map[color_index(color)]; } } #[cfg(feature = "gifed")] pub fn palette_gifed(&self) -> gifed::block::Palette { self.palette.as_slice().as_bytes().try_into().unwrap() } /// Retrieve the palette this squasher is working from pub fn palette(&self) -> &[RGB8] { &self.palette } /// Retrieve the palette as bytes pub fn palette_bytes(&self) -> Vec { self.palette.as_bytes().to_owned() } /// Takes an image buffer of RGB data and fill the color map fn unique_and_sort<'a, Img>(buffer: Img) -> Vec where Img: Into>, { let ImageData(rgb) = buffer.into(); let mut colors: HashMap = HashMap::default(); //count pixels for px in rgb { match colors.get_mut(px) { None => { colors.insert(*px, 1); } Some(n) => *n += 1, } } Self::sort(colors) } fn sort(map: HashMap) -> Vec { let mut sorted: Vec<(RGB8, usize)> = map.into_iter().collect(); sorted.sort_by(|(colour1, freq1), (colour2, freq2)| { freq2 .cmp(freq1) .then(colour2.r.cmp(&colour1.r)) .then(colour2.g.cmp(&colour1.g)) .then(colour2.b.cmp(&colour1.b)) }); sorted.into_iter().map(|(color, _count)| color).collect() } /// Pick the colors in the palette from a Vec of colors sorted by number /// of times they occur, high to low. fn select_colors(&self, sorted: Vec) -> Vec { let tolerance = (self.tolerance_percent / 100.0) * 765.0; let max_colours = self.max_colours_min1.as_usize() + 1; let mut selected_colors: Vec = Vec::with_capacity(max_colours); for sorted_color in sorted { if max_colours <= selected_colors.len() { break; } else if selected_colors.iter().all(|selected_color| { (self.difference_fn)(selected_color, &sorted_color) > tolerance }) { selected_colors.push(sorted_color); } } selected_colors } /// Pick the closest colour in the palette for each unique color in the image fn map_selected(&mut self, sorted: &[RGB8]) { for colour in sorted { let mut min_diff = f32::MAX; let mut min_index = usize::MAX; for (index, selected) in self.palette.iter().enumerate() { let diff = (self.difference_fn)(colour, selected); if diff.max(0.0) < min_diff { min_diff = diff; min_index = index; } } self.map[color_index(colour)] = T::from_usize(min_index); } } } impl Squasher { /// Takes an RGB image buffer and writes the indicies to the first third of /// that buffer. The buffer is not resized. /// /// # Returns /// The new size of the image pub fn map_over(&mut self, image: &mut [u8]) -> usize { // "redundant slicing" here is to drop the mut on the reference because // ImageData doesn't have a From<&mut [u8]> and I don't particularly want // it to #[allow(clippy::redundant_slicing)] let sorted = Self::unique_and_sort(&image[..]); // We have to map the colours of this image now because it might contain // colours not present in the first image. self.map_selected(&sorted); for idx in 0..(image.len() / 3) { let rgb_idx = idx * 3; let color = RGB8::new(image[rgb_idx], image[rgb_idx + 1], image[rgb_idx + 2]); let color_index = self.map[color_index(&color)]; image[idx] = color_index; } image.len() / 3 } } pub trait Count: Copy + Clone { fn zero() -> Self; fn as_usize(&self) -> usize; fn from_usize(from: usize) -> Self; fn le(&self, rhs: &usize) -> bool; } macro_rules! count_impl { ($kind:ty) => { impl Count for $kind { fn zero() -> Self { 0 } fn as_usize(&self) -> usize { *self as usize } #[inline(always)] fn from_usize(from: usize) -> Self { from as Self } #[inline(always)] fn le(&self, rhs: &usize) -> bool { *self as usize <= *rhs } } }; } count_impl!(u8); count_impl!(u16); count_impl!(u32); count_impl!(u64); count_impl!(usize); pub struct ImageData<'a>(&'a [RGB8]); impl<'a> From<&'a Vec> for ImageData<'a> { fn from(plain: &'a Vec) -> Self { ImageData(plain.as_rgb()) } } impl<'a> From<&'a [u8]> for ImageData<'a> { fn from(plain: &'a [u8]) -> Self { ImageData(plain.as_rgb()) } } impl<'a> From<&'a [RGB8]> for ImageData<'a> { fn from(rgb: &'a [RGB8]) -> Self { ImageData(rgb) } } /// Compute the color index into the big-map-of-all-colours. #[inline(always)] fn color_index(c: &RGB8) -> usize { c.r as usize * (256 * 256) + c.g as usize * 256 + c.b as usize }