about summary refs log tree commit diff
path: root/src/selection.rs
diff options
context:
space:
mode:
Diffstat (limited to 'src/selection.rs')
-rw-r--r--src/selection.rs176
1 files changed, 176 insertions, 0 deletions
diff --git a/src/selection.rs b/src/selection.rs
index d93603b..c4a0285 100644
--- a/src/selection.rs
+++ b/src/selection.rs
@@ -156,3 +156,179 @@ impl Selector for Kmeans {
 			.collect()
 	}
 }
+
+pub struct HeuristicSorsel {
+	tolerance: f32,
+	variance: f32,
+	max_attempts: usize,
+	difference_fn: Box<DiffFn>,
+}
+
+impl Selector for HeuristicSorsel {
+	/// Pick the colors in the palette from a Vec of colors sorted by number
+	/// of times they occur, high to low.
+	fn select(&mut self, max_colours: usize, image: ImageData) -> Vec<RGB8> {
+		let colors = Self::unique_and_sort(image);
+
+		let mut best = RunData {
+			score: f32::MAX,
+			palette: vec![],
+		};
+
+		let mut attempts = 0;
+		//let mut current_tolerance = 9.0 - (max_colours as f32).log2();
+		let mut current_tolerance = self.tolerance;
+		let mut current_variance = self.variance;
+
+		while attempts < self.max_attempts {
+			attempts += 1;
+
+			let higher = current_tolerance + current_variance;
+			let lower = current_tolerance - current_variance;
+
+			let run_up = Self::compute_once(&colors, max_colours, higher, &self.difference_fn);
+			let run_down = Self::compute_once(&colors, max_colours, lower, &self.difference_fn);
+
+			if run_up.score >= best.score && run_down.score >= best.score {
+				// neither was better than the previous best. can we cut the
+				// variance to try and fine tune?
+				if current_variance > 0.01 {
+					// Yes, cut it in half and run again.
+					current_variance /= 2.0;
+				} else {
+					// No, we've reached our limit. Break from the loop
+					break;
+				}
+			} else if run_up.score < run_down.score {
+				current_tolerance = higher;
+				best = run_up;
+			} else {
+				current_tolerance = lower;
+				best = run_down;
+			}
+		}
+
+		println!("final tolerance {:.2}", current_tolerance);
+
+		best.palette
+	}
+}
+
+struct RunData {
+	palette: Vec<RGB8>,
+	score: f32,
+}
+
+impl HeuristicSorsel {
+	fn compute_once(
+		colors: &[(RGB8, usize)],
+		max_colours: usize,
+		tolerance: f32,
+		diff_fn: &DiffFn,
+	) -> RunData {
+		let tolerance = (tolerance / 100.0) * 765.0;
+		let mut selected_colors: Vec<RGB8> = Vec::with_capacity(max_colours);
+
+		for (sorted_color, _) in colors {
+			if max_colours <= selected_colors.len() {
+				break;
+			} else if selected_colors
+				.iter()
+				.all(|selected_color| (diff_fn)(selected_color, sorted_color) > tolerance)
+			{
+				selected_colors.push(*sorted_color);
+			}
+		}
+
+		// Calculate a score for this tolerance. The total score is the sum of
+		// the color scores. The color score is the number of times that colour
+		// occures multiplied with the least difference.
+		let mut score = 0.0;
+		for (color, count) in colors {
+			let mut min_diff = f32::MAX;
+
+			for selected in &selected_colors {
+				let diff = (diff_fn)(selected, color);
+				if diff.max(0.0) < min_diff {
+					min_diff = diff;
+				}
+			}
+
+			score += min_diff * (*count as f32);
+		}
+
+		RunData {
+			palette: selected_colors,
+			score,
+		}
+	}
+
+	pub fn tolerance(mut self, tolerance: f32) -> Self {
+		self.tolerance = tolerance;
+		self
+	}
+
+	pub fn variance(mut self, vary: f32) -> Self {
+		self.variance = vary;
+		self
+	}
+
+	pub fn max_attempts(mut self, count: usize) -> Self {
+		self.max_attempts = count;
+		self
+	}
+
+	/// The function to use to compare colours while selecting the palette.
+	///
+	/// see the [difference] module for functions included with the crate and
+	/// information on implementing your own.
+	pub fn difference(mut self, diff_fn: &'static DiffFn) -> Self {
+		self.difference_fn = Box::new(diff_fn);
+		self
+	}
+
+	/// Takes an image buffer of RGB data and fill the color map
+	fn unique_and_sort<'a, Img>(buffer: Img) -> Vec<(RGB8, usize)>
+	where
+		Img: Into<ImageData<'a>>,
+	{
+		let ImageData(rgb) = buffer.into();
+		let mut colors: HashMap<RGB8, usize> = HashMap::default();
+
+		//count pixels
+		for px in rgb {
+			match colors.get_mut(px) {
+				None => {
+					colors.insert(*px, 1);
+				}
+				Some(n) => *n += 1,
+			}
+		}
+
+		Self::sort(colors)
+	}
+
+	fn sort(map: HashMap<RGB8, usize>) -> Vec<(RGB8, usize)> {
+		let mut sorted: Vec<(RGB8, usize)> = map.into_iter().collect();
+		sorted.sort_by(|(colour1, freq1), (colour2, freq2)| {
+			freq2
+				.cmp(freq1)
+				.then(colour2.r.cmp(&colour1.r))
+				.then(colour2.g.cmp(&colour1.g))
+				.then(colour2.b.cmp(&colour1.b))
+		});
+
+		sorted.into_iter().collect()
+	}
+}
+
+impl Default for HeuristicSorsel {
+	fn default() -> Self {
+		Self {
+			tolerance: 3.0,
+			variance: 0.25,
+			max_attempts: 10,
+			difference_fn: Box::new(difference::rgb),
+		}
+	}
+}